POSITIVE CONNECTION (PC) DETAILS

NO SCALE

FILL SLOT AND WEDGE BETWEEN BLOCKS WITH STONE

PLACE GEOGRID FLUSH WITH CONCRETE SURFACE BEFORE BACKFILLING WITH STONE

(UPPER BLOCK)

NON-WOVEN GEOTEXTILE FABRIC (IF SPECIFIED)

AASHTO NO. 57 STONE TO EXTEND AT LEAST 12" BEHIND BLOCKS

(LOWER BLOCK)

12" WIDE STRIP OF GEOGRID

SECTION VIEW THROUGH BLOCKS

NO SCALE

GEOGRID STRIP WRAPS THROUGH BLOCK AND EXTENDS FULL LENGTH (L) INTO REINFORCED FILL ZONE (TYPICAL)

3D VIEW OF BACK OF BLOCKS

NO SCALE

Positive Connection Detail
This drawing is for reference only. Determination of the suitability and/or manner of use of any details contained in this document is the sole responsibility of the design engineer of record. Final project designs, including all construction details, shall be prepared by a licensed professional engineer using the actual conditions of the proposed site.
Geogrid Layout for Convex Curves and Radial Corners

Geogrid strips may be overlapped directly. Reinforcement effective unit perimeter for pullout calculations, C = 1.5 (1 side full contact with soil, 1 side partial contact with soil).

Geogrid strips (for blocks one layer down)

Geogrid strips (for blocks on current layer)

Place stone in joint between adjacent blocks

Place 18" (457 mm) high piece of non-woven geotextile fabric (AASHTO M288 Survivability Class 3) in joint between blocks (Typical)

When blocks become too closely spaced, place fabric across joint at back of blocks

Minimum radius for bottom row

<table>
<thead>
<tr>
<th>Number of courses</th>
<th>Height of wall</th>
<th>Radius from face of block</th>
<th>Distance between blocks*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1'-6" (0.46 m)</td>
<td>14'-6" (4.42 m)</td>
<td>0.13" (3 mm)</td>
</tr>
<tr>
<td>2</td>
<td>3'-0" (0.91 m)</td>
<td>14'-8" (4.47 m)</td>
<td>0.21" (5 mm)</td>
</tr>
<tr>
<td>3</td>
<td>4'-6" (1.37 m)</td>
<td>14'-10" (4.52 m)</td>
<td>0.28" (7 mm)</td>
</tr>
<tr>
<td>4</td>
<td>6'-0" (1.83 m)</td>
<td>15'-0" (4.57 m)</td>
<td>0.36" (9 mm)</td>
</tr>
<tr>
<td>5</td>
<td>7'-6" (2.29 m)</td>
<td>15'-2" (4.62 m)</td>
<td>0.43" (11 mm)</td>
</tr>
<tr>
<td>6</td>
<td>9'-0" (2.74 m)</td>
<td>15'-4" (4.67 m)</td>
<td>0.50" (13 mm)</td>
</tr>
<tr>
<td>7</td>
<td>10'-6" (3.20 m)</td>
<td>15'-6" (4.72 m)</td>
<td>0.57" (15 mm)</td>
</tr>
<tr>
<td>8</td>
<td>12'-0" (3.66 m)</td>
<td>15'-8" (4.78 m)</td>
<td>0.63" (16 mm)</td>
</tr>
<tr>
<td>9</td>
<td>15'-6" (4.71 m)</td>
<td>15'-10" (4.83 m)</td>
<td>0.70" (18 mm)</td>
</tr>
<tr>
<td>10</td>
<td>16'-0" (4.88 m)</td>
<td>16'-0" (4.88 m)</td>
<td>0.76" (19 mm)</td>
</tr>
<tr>
<td>11</td>
<td>16'-6" (5.03 m)</td>
<td>16'-2" (4.93 m)</td>
<td>0.83" (21 mm)</td>
</tr>
<tr>
<td>12</td>
<td>18'-0" (5.49 m)</td>
<td>16'-4" (4.98 m)</td>
<td>0.88" (22 mm)</td>
</tr>
<tr>
<td>13</td>
<td>19'-6" (5.94 m)</td>
<td>16'-6" (5.03 m)</td>
<td>0.95" (24 mm)</td>
</tr>
<tr>
<td>14</td>
<td>21'-0" (6.40 m)</td>
<td>16'-8" (5.08 m)</td>
<td>1.01" (26 mm)</td>
</tr>
</tbody>
</table>

* Distance between blocks is measured at the back of 28" (710 mm) blocks and 24" (610 mm) behind the form parging line (bark edge of face texture) for 41" (1030 mm) blocks. Thin distance is intended to be a guide only. Minimum radius is controlling.

14'-6" (4.42 m) is the minimum radius for Redi-Rock blocks. It occurs when all the blocks are placed tight together. A larger radius is required on the bottom row of a Redi-Rock wall to account for the batter between courses of blocks and still provide enough space to construct the top row of blocks.

Top View

Back View

* Distance between blocks

This drawing is for reference only. Determination of the suitability and/or manner of use of any details contained in this document is the sole responsibility of the design engineer of record. Final project designs, including all construction details, shall be prepared by a licensed professional engineer using the actual conditions of the proposed site.
Geogrid Layout for Concave Curves and Radial Corners

Geogrid strips (for blocks on current layer)

Geogrid strips (for blocks one layer down)

Radius
14.6' (4.4 m) minimum recommended

L (Design Length)

This drawing is for reference only. Determination of the suitability and/or manner of use of any details contained in this document is the sole responsibility of the design engineer of record. Final project designs, including all construction details, shall be prepared by a licensed professional engineer using the actual conditions of the proposed site.
Geogrid Layout for 90° Inside Corner

Top View

Block placement - First row

Block placement - Second row

Set the first block in back row of blocks tight against the end block in the 90° wall

Set the middle of the first block in 90° wall ± 4" (102 mm) past the end of the block in the row below to align back of knobs on the back row

Set 90° wall ± 4" (102 mm) from the middle of the end block to align back of knobs on the 90° wall

Set back row of blocks first

Align back of knobs

Geogrid strips (for blocks on current layer)

Geogrid strips (for blocks one layer down)

(Design Length)

L

This drawing is for reference only. Determination of the suitability and/or manner of use of any details contained in this document is the sole responsibility of the design engineer of record. Final project designs, including all construction details, shall be prepared by a licensed professional engineer using the actual conditions of the proposed site.
Geogrid Layout for 90° Outside Corner

Geogrid strips are not connected to freestanding corner block. Interface shear transfer between PC and Corner blocks secure corner block in place.
Reinforcement coverage = 25% at corner block.

Top View

Block Layout for 90° Outside Corner

The top row of blocks are shown in red. They have been cutout in line with their bottom grooves to show how they fit with the knobs on the bottom row of block.
The geogrid strips are not shown for clarity.

Top View of Corner

90° Corner block

10" (254 mm) Knob is fully engaged

Non-woven geotextile (AASHTO M288 Survivability Class 3) in all joints between blocks (Typical)

3D View of Corner

This drawing is for reference only. Determination of the suitability and/or manner of use of any details contained in this document is the sole responsibility of the design engineer of record. Final project designs, including all construction details, shall be prepared by a licensed professional engineer using the actual conditions of the proposed site.
PAVEMENT SECTION BELOW ELEVATION
OF TOP GEOGRID LAYER

GUARDRAIL

3' MIN.
(FROM BACK OF BLOCK)

CONCRETE CURB AND GUTTER
(PITCH-OUT CURB SHOWN)

PAVEMENT

GEOGRID STRIPS

DIVE GEOGRID STRIPS AS NEEDED TO INSTALL AT LEAST 3" BELOW PAVEMENT AND BASE

SECTION VIEW