1. INSTALL HYDRANT CONCURRENTLY WITH WALL CONSTRUCTION PER SITE PLAN REQUIREMENTS.
2. INSTALL GEOGRID STRIPS AROUND RISER.
3. DRAINAGE BLANKET EXTENDS TO BACK OF REINFORCED SOIL ZONE.
4. WIDTH OF DRAINAGE BLANKET IS 3' AND THICKNESS IS 6".
5. DIVE GEOGRID STRIP DOWN UNDER DRAINAGE BLANKET AS NEEDED.
6. INSTALL AASHTO NO. 57 STONE BETWEEN THRUST BLOCK AND REDI-ROCK PC BLOCKS.

This drawing is for reference only. Determination of the suitability and/or manner of use of any details contained in this document is the sole responsibility of the design engineer of record. Final project designs, including all construction details, shall be prepared by a licensed professional engineer using the actual conditions of the proposed site.
This drawing is for reference only. Determination of the suitability and/or manner of use of any details contained in this document is the sole responsibility of the design engineer of record. Final project designs, including all construction details, shall be prepared by a licensed professional engineer using the actual conditions of the proposed site.
Pipes Installed Perpendicular Through Wall

Plan View

- Remove only the minimum number of blocks required to fit pipe through wall
- Concrete collar (Cast-in-place around pipe)
- Pipe protruding through wall (48" (1.22 m) diameter concrete pipe shown)
- Use adequate measures to address scour, runoff, and other issues at base of wall
- Leveling pad or lower courses of Redi-Rock blocks

Section View

- Concrete collar (Cast-in-place around pipe)
- Non-woven geotextile fabric (AASHTO M288 Survivability Class 1)
- 360° around pipe and behind collar
- Pipe protruding through wall (48" (1.22 m) diameter concrete pipe shown)
- Use adequate measures to address scour, runoff, and other issues at base of wall

This drawing is for reference only. Determination of the suitability and/or manner of use of any details contained in this document is the sole responsibility of the design engineer of record. Final project designs, including all construction details, shall be prepared by a licensed professional engineer using the actual conditions of the proposed site.
Utilities in the Reinforced Soil Zone

Keep sufficient separation to meet max geogrid slope and clearance requirements

Maintain 3" (76 mm) minimum between geogrid and pipe

Wrap pipe joints with non-woven geotextile fabric (AASHTO M288 Survivability Class 2)
48" (1.22 m) wide minimum centered on joint

Storm drain or sanitary sewer pipe installed parallel to wall

AASHTO No. 57 stone (or equivalent)
6" (152 mm) minimum around pipe

Install geogrid strips above and below pipe

Storm or Sanitary Sewer Pipe

Keep sufficient separation to meet max geogrid slope and clearance requirements

Maintain 3" (76 mm) minimum between geogrid and pipe

"Dry" Utilities installed parallel to wall

Install geogrid strips above and below pipe

"Dry" Utilities (Electric, Gas, Telecommunications)

Redi-Rock International follows the recommendations of FHWA GEC 011 and discourages placing pipes or other horizontal obstructions behind the wall in the reinforced soil zone. Placing pipes in this zone could lead to maintenance problems and potential wall failure.

This drawing is for reference only. Determination of the suitability and/or manner of use of any details contained in this document is the sole responsibility of the design engineer of record. Final project designs, including all construction details, shall be prepared by a licensed professional engineer using the actual conditions of the proposed site.
Light Pole Base or Concrete Pile in Reinforced Soil Zone

Light pole base or concrete pile
Maximum diameter = 32" (0.81 m)
Spacing = 46 1/2" (1.17 m) centers

Geogrid strips installed every other row of blocks
(25% coverage ratio)

3D View from Back

This drawing is for reference only. Determination of the suitability and/or manner of use of any details contained in this document is the sole responsibility of the design engineer of record. Final project designs, including all construction details, shall be prepared by a licensed professional engineer using the actual conditions of the proposed site.