Infill Weight Calculations

R-28M 28” (710 mm) MIDDLE BLOCK WITH SOIL INFILL

INFILLED UNIT WEIGHT CALCULATIONS

CONCRETE

Design Unit Weight = 143pcf (2291 kg/m³)

- **LIMESTONE AND COBBLESTONE FACE TEXTURE**
 - Average Volume (V_c) = 11.28 ft³ (0.32 m³) (From CAD Model)
 - Concrete Block Weight (W_c) = $V_c \times 143$ pcf = 1,613 lbs (732 kg)

- **KINGSTONE AND LEDGESTONE FACE TEXTURE**
 - Average Volume (V_c) = 10.78 ft³ (0.31 m³) (From CAD Model)
 - Concrete Block Weight (W_c) = $V_c \times 143$ pcf = 1,542 lbs (699 kg)

INFILL SOIL

Design Unit Weight = 100 pcf (1602 kg/m³)

- Soil considered as infill includes the soil between adjacent blocks and at the ends of the bottom groove in the block.
- Volume (V_s) = 1.05 ft³ (0.03 m³) (From CAD Model)
- Infill Soil Weight (W_s) = $V_s \times 100$ pcf = 105 lbs (47.7 kg)
- Center of Gravity (COGs) = 13.6 in (345 mm) (Data from CAD Model)

DESIGN VOLUME

28 in x 46.125 in x 18 in = 13.45 ft³ (0.38 m³)

INFILLED UNIT WEIGHT

- **LIMESTONE AND COBBLESTONE FACE TEXTURE**
 - INFILL = $\frac{1,613 \text{ lb} + 105 \text{ lb}}{13.45 \text{ ft}^3} = 127.7 \text{ pcf}$
 - INFILL = $\frac{733 \text{ kg} + 48 \text{ kg}}{0.381 \text{ m}^3} = 2045 \text{ kg/m}^3$

- **KINGSTONE AND LEDGESTONE FACE TEXTURE**
 - INFILL = $\frac{1,542 \text{ lb} + 105 \text{ lb}}{13.45 \text{ ft}^3} = 122.4 \text{ pcf}$
 - INFILL = $\frac{701 \text{ kg} + 48 \text{ kg}}{0.381 \text{ m}^3} = 1960 \text{ kg/m}^3$

NOTE: The infilled unit weights shown here are reference values. Several factors can cause the unit weights of both concrete and infill soil to vary. The designer should use sound engineering judgement when assigning an infilled unit weight value for analysis.
Infill Weight Calculations

R-28PCM 28” (710 mm) POSITIVE CONNECTION (PC) MIDDLE BLOCK WITH SOIL INFILL

INFILLED UNIT WEIGHT CALCULATIONS

CONCRETE

<table>
<thead>
<tr>
<th>Design Unit Weight = 143 pcf (2291 kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIMESTONE AND COBBLESTONE FACE TEXTURE</td>
</tr>
<tr>
<td>Average Volume (Vc) 10.62 ft³ (0.30 m³)</td>
</tr>
<tr>
<td>Concrete Block Weight (Wc) Wc = 10.62 ft³ x 143 pcf = 1,519 lbs (690 kg)</td>
</tr>
<tr>
<td>KINGSTONE AND LEDGESTONE FACE TEXTURE</td>
</tr>
<tr>
<td>Average Volume (Vc) 10.12 ft³ (0.29 m³)</td>
</tr>
<tr>
<td>Concrete Block Weight (Wc) Wc = 10.12 ft³ x 143 pcf = 1,447 lbs (658 kg)</td>
</tr>
</tbody>
</table>

INFILL SOIL

Design Unit Weight = 100 pcf (1602 kg/m³)

Soil considered as infill includes the soil between adjacent blocks, in the geogrid slot, and at the ends of the bottom groove in the block.

| Volume (Vs) 1.73 ft³ (0.05 m³) (From CAD Model) |
| Infill Soil Weight (Ws) Ws = 1.73 ft³ x 100 pcf = 173 lbs (79 kg) |
| Center of Gravity (COGs) 9.9 in (251 mm) (Data from CAD Model) |

DESIGN VOLUME

28 in x 46.125 in x 18 in = 23,247 in³ = 13.45 cft

INFILL WEIGHT

LIMESTONE AND COBBLESTONE FACE TEXTURE

\[W_{\text{infl}} = (1,519 \text{ lb} + 173 \text{ lb}) / 13.45 \text{ cft} = 125.8 \text{ pcf} \]

\[(690 \text{ kg} + 79 \text{ kg}) / 0.381 \text{ m}³ = 2015 \text{ kg/m³} \]

KINGSTONE AND LEDGESTONE FACE TEXTURE

\[W_{\text{infl}} = (1,447 \text{ lb} + 173 \text{ lb}) / 13.45 \text{ cft} = 120.4 \text{ pcf} \]

\[(658 \text{ kg} + 79 \text{ kg}) / 0.381 \text{ m}³ = 1629 \text{ kg/m³} \]

NOTE: The infilled unit weights shown here are reference values. Several factors can cause the unit weights of concrete and infill soil to vary. The designer should use sound engineering judgement when assigning an infilled unit weight value for analysis.

R-41M 41” (1030 mm) MIDDLE BLOCK WITH SOIL INFILL

INFILLED UNIT WEIGHT CALCULATIONS

CONCRETE

<table>
<thead>
<tr>
<th>Design Unit Weight = 143 pcf (2291 kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIMESTONE AND COBBLESTONE FACE TEXTURE</td>
</tr>
<tr>
<td>Average Volume (Vc) 16.14 ft³ (0.457 m³)</td>
</tr>
<tr>
<td>Concrete Block Weight (Wc) Wc = 16.14 ft³ x 143 pcf = 2,308 lbs (1048 kg)</td>
</tr>
<tr>
<td>KINGSTONE AND LEDGESTONE FACE TEXTURE</td>
</tr>
<tr>
<td>Average Volume (Vc) 15.65 ft³ (0.443 m³)</td>
</tr>
<tr>
<td>Concrete Block Weight (Wc) Wc = 15.65 ft³ x 143 pcf = 2,238 lbs (1015 kg)</td>
</tr>
</tbody>
</table>

INFILL SOIL

Design Unit Weight = 100 pcf (1602 kg/m³)

Soil considered as infill includes the soil between adjacent blocks and at the ends of the bottom groove in the block.

| Volume (Vs) 2.18 ft³ (0.062 m³) (From CAD Model) |
| Infill Soil Weight (Ws) Ws = 2.18 ft³ x 100 pcf = 218 lbs (99.1 kg) |
| Center of Gravity (COGs) 20.5 in (521 mm) (From CAD Model) |

DESIGN VOLUME

40.5 in x 46.125 in x 18 in = 19.46 cft

INFILL WEIGHT

LIMESTONE AND COBBLESTONE FACE TEXTURE

\[W_{\text{infl}} = (2,308 \text{ lb} + 218 \text{ lb}) / 19.46 \text{ cft} = 129.8 \text{ pcf} \]

\[(1049 \text{ kg} + 99 \text{ kg}) / 0.551 \text{ m}³ = 2079 \text{ kg/m³} \]

KINGSTONE AND LEDGESTONE FACE TEXTURE

\[W_{\text{infl}} = (2,238 \text{ lb} + 218 \text{ lb}) / 19.46 \text{ cft} = 126.2 \text{ pcf} \]

\[(1017 \text{ kg} + 99 \text{ kg}) / 0.551 \text{ m}³ = 2021 \text{ kg/m³} \]

NOTE: The infilled unit weights shown here are reference values. Several factors can cause the unit weights of both concrete and infill soil to vary. The designer should use sound engineering judgement when assigning an infilled unit weight value for analysis.
INFLILLED UNIT WEIGHT CALCULATIONS

CONCRETE

LIMESTONE AND COBBLESTONE FACE TEXTURE

Average Volume (Vc) = 23.00 cft (0.651 m³) (From CAD Model)
Concrete Block Weight (Wc) = 23.0 cft x 143 pcf = 3,287 lbs (1491 kg)

KINGSTONE AND LEDGESTONE FACE TEXTURE

Average Volume (Vc) = 22.49 cft (0.637 m³) (From CAD Model)
Concrete Block Weight (Wc) = 22.49 cft x 143 pcf = 3,216 lbs (1458 kg)

Average Center of Gravity (COGc) = 31.1 in (790 mm) (From CAD Model)

INFILL SOIL

Design Unit Weight = 100 pcf (1602 kg/m³)

Soil considered as infill includes the soil between adjacent blocks, in the geogrid slot, and at the ends of the bottom groove in the block.

Volume (Vs) = 4.70 cft (0.133 m³) (From CAD Model)
Infill Soil Weight (Ws) = 4.70 cft x 100 pcf = 470 lbs (214 kg)

Center of Gravity (COGs) = 20.2 in (513 mm) (Data from CAD Model)

NOTE: The infilled unit weights shown here are reference values. Several factors can cause the unit weights of both concrete and infill soil to vary. The designer should use sound engineering judgement when assigning an infilled unit weight value for analysis.

INFILLED UNIT WEIGHT

LIMESTONE AND COBBLESTONE FACE TEXTURE

Average Volume (Vc) = 23.00 cft (0.651 m³)
Concrete Block Weight (Wc) = 3,287 lbs (1491 kg)

KINGSTONE AND LEDGESTONE FACE TEXTURE

Average Volume (Vc) = 22.49 cft (0.637 m³)
Concrete Block Weight (Wc) = 3,216 lbs (1458 kg)

Average Center of Gravity (COGc) = 31.1 in (790 mm)

Infill Weight Calculations

CONCRETE

Design Unit Weight = 143 pcf (2291 kg/m³)

LIMESTONE AND COBBLESTONE FACE TEXTURE

Average Volume (Vc) = 15.19 cft (0.43 m³) (From CAD Model)
Concrete Block Weight (Wc) = 15.19 cft x 143 pcf = 2,172 lbs (987 kg)

KINGSTONE AND LEDGESTONE FACE TEXTURE

Average Volume (Vc) = 14.69 cft (0.42 m³) (From CAD Model)
Concrete Block Weight (Wc) = 14.69 cft x 143 pcf = 2,101 lbs (955 kg)

Average Center of Gravity (COGc) = 20.4 in (518 mm) (From CAD Model)

INFILL SOIL

Design Unit Weight = 100 pcf (1602 kg/m³)

Soil considered as infill includes the soil between adjacent blocks, in the geogrid slot, and at the ends of the bottom groove in the block.

Volume (Vs) = 2.92 cft (0.08 m³) (From CAD Model)
Infill Soil Weight (Ws) = 2.92 cft x 100 pcf = 292 lbs (133 kg)

Center of Gravity (COGs) = 15.6 in (396 mm) (Data from CAD Model)

NOTE: The infilled unit weights shown here are reference values. Several factors can cause the unit weights of both concrete and infill soil to vary. The designer should use sound engineering judgement when assigning an infilled unit weight value for analysis.
INFLFLED UNIT WEIGHT CALCULATIONS

CONCRETE
Design Unit Weight = 143 pcf (2291 kg/m³)

LEDGESTONE FACE TEXTURE

- **Average Volume (Vc):** 23.29 cf (0.66 m³) (From CAD Model)
- **Concrete Block Weight (Wc):** 23.29 cf x 143 pcf = 3,331 lbs (1,511 kg)
- **Average Center of Gravity (COGc):** 29.0 in (737 mm) (From CAD Model)

INFILL
Design Unit Weight = 100 pcf (1,602 kg/m³)

- **Material considered as infill includes the crushed stone between adjacent blocks and in the hollow cores within the blocks.**
- **Volume (Vs):** 22.88 cft (0.65 m³) (From CAD Model)
- **Infill Soil Weight (Ws):** 22.88 cft x 100 pcf = 2,288 lbs (1,038 kg)
- **Center of Gravity (COGs):** 20.0 in (507 mm) (From CAD Model)

DESIGN VOLUME & CENTER OF GRAVITY
52 in x 46.125 in x 36 in = 49.97 cft (1.415 m x 1.172 m x 0.914 m = 0.615 m³)

\[
\text{COG} = \frac{29.0 \text{ in} \times 3,331 \text{ lbs} + 20.0 \text{ in} \times 2,288 \text{ lbs}}{3,331 \text{ lbs} + 2,288 \text{ lbs}} = 25.34 \text{ in} (644 \text{ mm})
\]

INFILLED UNIT WEIGHT

LEDGESTONE FACE TEXTURE

\[
\text{INFILL} = \frac{3,331 \text{ lb} + 2,288 \text{ lb}}{49.97 \text{ cft}} = 112.4 \text{ pcf}
\]

\[
\left(\frac{1,511 \text{ kg} + 1,038 \text{ kg}}{1.415 \text{ m}^3}\right) = 1,801 \text{ kg/m}^3
\]

NOTE: The infilled unit weights shown here are reference values. Several factors can cause the unit weights of both concrete and infill soil to vary. The designer should use sound engineering judgement when assigning an infilled unit weight value for analysis.

HOLLOW CORE RETAINING BLOCKS

- **Infill Weight Calculations:**

INFILLED UNIT WEIGHT CALCULATIONS

CONCRETE
Design Unit Weight = 143 pcf (2291 kg/m³)

LEGGISTONE FACE TEXTURE

- **Average Volume (Vc):** 23.29 cf (0.66 m³) (From CAD Model)
- **Concrete Block Weight (Wc):** 23.29 cf x 143 pcf = 3,331 lbs (1,511 kg)
- **Average Center of Gravity (COGc):** 29.0 in (737 mm) (From CAD Model)

INFILL
Design Unit Weight = 100 pcf (1,602 kg/m³)

- **Material considered as infill includes the crushed stone between adjacent blocks and in the hollow cores within the blocks.**
- **Volume (Vs):** 22.88 cft (0.65 m³) (From CAD Model)
- **Infill Soil Weight (Ws):** 22.88 cft x 100 pcf = 2,288 lbs (1,038 kg)
- **Center of Gravity (COGs):** 20.0 in (507 mm) (From CAD Model)

DESIGN VOLUME & CENTER OF GRAVITY
52 in x 46.125 in x 36 in = 49.97 cft (1.321 m x 1.172 m x 0.914 m = 0.615 m³)

\[
\text{COG} = \frac{29.0 \text{ in} \times 3,331 \text{ lbs} + 20.0 \text{ in} \times 2,288 \text{ lbs}}{3,331 \text{ lbs} + 2,288 \text{ lbs}} = 25.34 \text{ in} (644 \text{ mm})
\]

INFILLED UNIT WEIGHT

LEGGISTONE FACE TEXTURE

\[
\text{INFILL} = \frac{3,331 \text{ lb} + 2,288 \text{ lb}}{49.97 \text{ cft}} = 112.4 \text{ pcf}
\]

\[
\left(\frac{1,511 \text{ kg} + 1,038 \text{ kg}}{1.415 \text{ m}^3}\right) = 1,801 \text{ kg/m}^3
\]

NOTE: The infilled unit weights shown here are reference values. Several factors can cause the unit weights of both concrete and infill soil to vary. The designer should use sound engineering judgement when assigning an infilled unit weight value for analysis. For overturning analyses, AASHTO recommends limiting the infill soil weight to 80% of its theoretical maximum for units without a solid bottom (11.11.4.4).
Infill Weight Calculations

R-7236HC 72” (1,830 mm) XL HOLLOW-CORE RETAINING BLOCK WITH SOIL INFILL

DESIGN INFORMATION

- **CONCRETE**
 - Design Unit Weight = 143 pcf (2,291 kg/m³)
 - LEDGESTONE FACE TEXTURE
 - Average Volume (Vc) 33.83 cft (0.96 m³) (From CAD Model)
 - Concrete Block Weight (Wc) 33.83 cft x 143 pcf = 4,837 lbs (2,194 kg)
 - Average Center of Gravity (COGc) 55.3 in (1,405 mm) (From CAD Model)

- **INFILL**
 - Design Unit Weight = 100 pcf (1,602 kg/m³)
 - Material considered as infill includes the crushed stone between adjacent blocks and in the hollow cores within the blocks.
 - Volume (Vs) 54.63 cft (1.55 m³) (From CAD Model)
 - Infill Soil Weight (Ws) 54.63 cft x 100 pcf = 5,463 lbs (2,478 kg)
 - Center of Gravity (COGs) 40.7 in (1,034 mm) (From CAD Model)

DESIGN VOLUME & CENTER OF GRAVITY

\[
\text{Design Volume} = 96 \text{ in} \times 46.125 \text{ in} \times 36 \text{ in} = 92.25 \text{ cft} \\
\text{COG} = \frac{55.3 \text{ in} \times 4,837 \text{ lbs} + 40.7 \text{ in} \times 5,463 \text{ lbs}}{4,837 \text{ lbs} + 5,463 \text{ lbs}} = 47.57 \text{ in} (1,208 \text{ mm})
\]

INFILLED UNIT WEIGHT

\[
\text{INFILL} = \frac{4,837 \text{ lb} + 5,463 \text{ lb}}{92.25 \text{ cft}} = 111.7 \text{ pcf} \\
(2,194 \text{ kg} + 2,478 \text{ kg}) / 2.612 \text{ m}^3 = 1,789 \text{ kg/m}^3
\]

NOTE: The infilled unit weights shown here are reference values. Several factors can cause the unit weights of both concrete and infill soil to vary. The designer should use sound engineering judgement when assigning an infilled unit weight value for analysis. For overturning analyses, AASHTO recommends limiting the infill soil weight to 80% of its theoretical maximum for units without a solid bottom (11.11.4-4).
The block-to-block setback available with Redi-Rock is controlled by the size and location of the shear knobs (domes) cast into the blocks. While the 10” (254 mm) diameter knob and the 1 5/8” (41 mm) setback position is the most common configuration, Redi-Rock has three different knob sizes and three different locations available.

Five degree (5°) setback
(Standard)
- 10" (254 mm) diameter knob
- Setback = 1 5/8" (41 mm)
- Move blocks forward during installation to engage shear knobs (Typical)

Available with:
- 28" (710 mm) blocks, 41" (1030 mm) blocks, and 60" (1520 mm) blocks
- 28" (710 mm) PC blocks (shown here) and 41" (1030 mm) PC blocks

One degree (1°) setback
(Specialty)
- 7 1/2” (190 mm) diameter knob
- Setback = 3/8” (10 mm)
- Move blocks forward during installation to engage shear knobs (Typical)

Available with:
- 28" (710 mm) blocks, 41" (1030 mm) blocks, and 60" (1520 mm) blocks
- 28" (710 mm) PC blocks (shown here) and 41" (1030 mm) PC blocks

Zero (0°) setback
(Specialty)
- 6 3/4” (171 mm) diameter knob
- Move blocks forward during installation to engage shear knobs (Typical)

Avaiable with:
- 28" (710 mm) blocks, 41" (1030 mm) blocks, and 60" (1520 mm) blocks
- 28" (710 mm) PC blocks (shown here) and 41" (1030 mm) PC blocks
Redi-Rock has two options for large batter retaining walls. Both options are created by relocating the knob so that it is further back in the Redi-Rock blocks compared to our smaller batter walls (5° and less). There are two knob locations further back in the block which create the 9" (230 mm) setback block and the planter block. Blocks made with knobs in either of these locations almost exclusively use 10" (254 mm) diameter knobs.

9" (230 mm) Setback Blocks

- Setback = 9 9/16" (238 mm)
- (27.5° batter angle on wall)

Available with:
- 41" (1030 mm) blocks (shown here) and 60" (1520 mm) blocks
- Not available in PC blocks

Planter Blocks

- Setback = 16 5/8" (422 mm)

Available with:
- 41" (1030 mm) blocks (shown here) and 60" (1520 mm) blocks
- Not available in PC blocks

36" (914 mm) High XL Hollow-Core Retaining Blocks

The block-to-block setback available with 36" (914 mm) high Redi-Rock XL hollow-core retaining blocks is controlled by the location of the shear knobs cast into the blocks. The 3 1/4" (83 mm) setback between courses creates a 5° batter angle on the back of the wall which is consistent with the batter angle created by 18" (457 mm) high Redi-Rock blocks with 10" (254 mm) shear knobs.
Interface Shear Report 6.75” (171 mm)

Test Methods: ASTM D6916 & NCMA SRWU-2
Test Facility: Bathurst, Clarabut Geotechnical Testing, Inc.
Block Type: 28” (710 mm) Positive Connection (PC) Block
Test Dates: 10/21/2011 - 6.75” (171 mm) Shear Knob Test

6.75” (171 mm) KNOB INTERFACE SHEAR DATA

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Normal Load (lb/ft)</th>
<th>Service State Shear (lb/ft)</th>
<th>Peak Shear (lb/ft)</th>
<th>Observed Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3,077 (44.930)</td>
<td>2,046 (30.490)</td>
<td>2,535 (37.965)</td>
<td>Test Stopped</td>
</tr>
<tr>
<td>2</td>
<td>10,881 (160.295)</td>
<td>10,999 (160.518)</td>
<td>11,252 (164.211)</td>
<td>Test Stopped</td>
</tr>
<tr>
<td>3</td>
<td>11,075 (161.627)</td>
<td>11,252 (164.211)</td>
<td>Test Stopped</td>
<td>Test Stopped</td>
</tr>
<tr>
<td>4</td>
<td>14,003 (211.712)</td>
<td>11,252 (164.211)</td>
<td>Test Stopped</td>
<td>Test Stopped</td>
</tr>
<tr>
<td>5</td>
<td>10,086 (150.852)</td>
<td>10,924 (160.164)</td>
<td>11,252 (164.211)</td>
<td>Test Stopped</td>
</tr>
<tr>
<td>6</td>
<td>8,585 (125.430)</td>
<td>8,786 (127.296)</td>
<td>Knob shear</td>
<td>Test Stopped</td>
</tr>
<tr>
<td>7</td>
<td>13,546 (197.689)</td>
<td>11,371 (165.947)</td>
<td>Knob shear</td>
<td>Test Stopped</td>
</tr>
<tr>
<td>8</td>
<td>10,074 (151.893)</td>
<td>10,999 (160.518)</td>
<td>Test Stopped</td>
<td>Test Stopped</td>
</tr>
<tr>
<td>9</td>
<td>5,222 (79.549)</td>
<td>5,722 (83.506)</td>
<td>11,252 (164.211)</td>
<td>Test Stopped</td>
</tr>
<tr>
<td>10</td>
<td>19,619 (286.318)</td>
<td>11,300 (164.911)</td>
<td>11,300 (164.911)</td>
<td>Test Stopped</td>
</tr>
</tbody>
</table>

Observed Failure:
- Test Stopped

Shear Capacity Calculation

\[S_{SS} = 1,178 + N \tan 54° \leq 10,970 \text{ lb/ft} \]

\[S_{P} = 8.99 + N \tan 52° \leq 160.1 \text{ kN/m} \]

Service State Shear:
- \(S_{SS} \) = 1,178 + N tan 54° \leq 10,970 lb/ft
- \(S_{P} \) = 8.99 + N tan 52° \leq 160.1 kN/m

Normal Load:
- \(2,000 \) (145.9)
- \(4,000 \) (291.9)
- \(6,000 \) (447.4)
- \(8,000 \) (592.9)
- \(10,000 \) (738.4)

Peak Shear:
- \(1,724 \) (25.160)
- \(3,160 \) (48.396)
- \(5,222 \) (79.549)
- \(5,786 \) (84.440)
- \(9,137 \) (136.871)

Observed Failure:
- Test Stopped

The information contained in this report has been compiled by Redi-Rock International, LLC as a recommendation of peak interface shear capacity. It is accurate to the best of our knowledge as of the date of its issue. However, final determination of the suitability of any design information and the appropriateness of this data to a given design purpose is the sole responsibility of the user. No warranty of performance or accuracy of the foregoing laboratory test results issued date: January 26, 2015.

Interface Shear Report 10” (254 mm)

Test Methods: ASTM D6916 & NCMA SRWU-2
Test Facility: Bathurst, Clarabut Geotechnical Testing, Inc.
Block Type: 28” (710 mm) Positive Connection (PC) Block
Test Dates: 10/14/2011 - 10” (254 mm) Shear Knob Test

10” (254 mm) KNOB INTERFACE SHEAR DATA

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Normal Load (lb/ft)</th>
<th>Service State Shear (lb/ft)</th>
<th>Peak Shear (lb/ft)</th>
<th>Observed Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>522 (7.618)</td>
<td>838 (12.359)</td>
<td>1,704 (25.160)</td>
<td>Test Stopped</td>
</tr>
<tr>
<td>2</td>
<td>12,007 (182.101)</td>
<td>11,300 (164.911)</td>
<td>11,300 (164.911)</td>
<td>Test Stopped</td>
</tr>
<tr>
<td>3</td>
<td>2,000 (30.490)</td>
<td>11,300 (164.911)</td>
<td>11,300 (164.911)</td>
<td>Test Stopped</td>
</tr>
<tr>
<td>4</td>
<td>4,000 (60.980)</td>
<td>11,300 (164.911)</td>
<td>11,300 (164.911)</td>
<td>Test Stopped</td>
</tr>
<tr>
<td>5</td>
<td>6,000 (91.470)</td>
<td>11,300 (164.911)</td>
<td>11,300 (164.911)</td>
<td>Test Stopped</td>
</tr>
<tr>
<td>6</td>
<td>8,000 (121.960)</td>
<td>11,300 (164.911)</td>
<td>11,300 (164.911)</td>
<td>Test Stopped</td>
</tr>
<tr>
<td>7</td>
<td>10,000 (152.430)</td>
<td>11,300 (164.911)</td>
<td>11,300 (164.911)</td>
<td>Test Stopped</td>
</tr>
<tr>
<td>8</td>
<td>12,000 (182.101)</td>
<td>11,300 (164.911)</td>
<td>11,300 (164.911)</td>
<td>Test Stopped</td>
</tr>
<tr>
<td>9</td>
<td>14,000 (212.571)</td>
<td>11,300 (164.911)</td>
<td>11,300 (164.911)</td>
<td>Test Stopped</td>
</tr>
<tr>
<td>10</td>
<td>16,000 (232.940)</td>
<td>11,300 (164.911)</td>
<td>11,300 (164.911)</td>
<td>Test Stopped</td>
</tr>
</tbody>
</table>

Observed Failure:
- Test Stopped

Shear Capacity Calculation

\[S_{SS} = 6,061 + N \tan 44° \leq 11,276 \text{ lb/ft} \]

\[S_{P} = 68.45 + N \tan 44° \leq 164.56 \text{ kN/m} \]

Service State Shear:
- \(S_{SS} = 6,061 + N \tan 44° \leq 11,276 \text{ lb/ft} \)
- \(S_{P} = 68.45 + N \tan 44° \leq 164.56 \text{ kN/m} \)

Normal Load:
- \(2,000 \) (29.2)
- \(4,000 \) (58.4)
- \(6,000 \) (87.6)
- \(8,000 \) (116.9)
- \(10,000 \) (145.9)

Peak Shear:
- \(522 \) (7.618)
- \(1,178 \) (17.618)
- \(2,046 \) (30.490)
- \(2,535 \) (37.965)
- \(2,926 \) (42.096)

Observed Failure:
- Test Stopped

The information contained in this report has been compiled by Redi-Rock International, LLC as a recommendation of peak interface shear capacity. It is accurate to the best of our knowledge as of the date of its issue. However, final determination of the suitability of any design information and the appropriateness of this data to a given design purpose is the sole responsibility of the user. No warranty of performance or accuracy of the foregoing laboratory test results issued date: January 26, 2015.
Interface Shear Report XL
Hollow-Core Retaining Block

Test Methods: ASTM D6916 & NCMA SRWU-2
Block Type: R-5236 52" Hollow-Core Retaining Block

INTERFACE SHEAR DATA

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Normal Load (lb/ft)</th>
<th>Peak Shear (lb/ft)</th>
<th>Observed Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>872 (12.719)</td>
<td>3,812 (55.630)</td>
<td>Test stopped - uplift</td>
</tr>
<tr>
<td>2</td>
<td>5,026 (73.352)</td>
<td>11,503 (167.877)</td>
<td>Knob/face shear</td>
</tr>
<tr>
<td>3</td>
<td>872 (12.719)</td>
<td>3,383 (49.376)</td>
<td>Test stopped - uplift</td>
</tr>
<tr>
<td>4</td>
<td>16,562 (241.704)</td>
<td>16,062 (245.537)</td>
<td>Test stopped - capacity</td>
</tr>
<tr>
<td>5</td>
<td>2,062 (30.998)</td>
<td>9,070 (131.714)</td>
<td>Test stopped - uplift</td>
</tr>
<tr>
<td>6</td>
<td>3,536 (51.842)</td>
<td>9,857 (143.048)</td>
<td>Test stopped - uplift</td>
</tr>
<tr>
<td>7</td>
<td>7,773 (113.442)</td>
<td>11,210 (165.968)</td>
<td>Knob/face shear</td>
</tr>
<tr>
<td>8</td>
<td>7,765 (113.318)</td>
<td>10,601 (154.710)</td>
<td>Test stopped - back cracked</td>
</tr>
<tr>
<td>9</td>
<td>7,656 (111.733)</td>
<td>12,405 (181.044)</td>
<td>Test stopped - back cracked</td>
</tr>
<tr>
<td>10</td>
<td>6,541 (95.458)</td>
<td>12,112 (176.705)</td>
<td>Test stopped - uplift</td>
</tr>
<tr>
<td>11</td>
<td>12,496 (182.360)</td>
<td>13,962 (203.757)</td>
<td>Test stopped - back cracked</td>
</tr>
</tbody>
</table>

Peak Shear Envelope:

- $S_p(1) = 4,547 + N \tan 44°$ (N < 7,017 lb/ft)
- $S_p(2) = 8,488 + N \tan 22°$ (7,017 lb/ft ≤ N < 16,118 lb/ft)
- $S_p(3) = 15,000$ lb/ft (N ≥ 16,118 lb/ft)

INFLECTION POINTS:

- $S_{s1} = 4,547 + N \tan 44°$ (N < 7,017 lb/ft)
- $S_{s2} = 8,488 + N \tan 22°$ (7,017 lb/ft ≤ N < 16,118 lb/ft)
- $S_{s3} = 15,000$ lb/ft (N ≥ 16,118 lb/ft)

Shear Capacity, lb/ft:

- $N_1 = 4,547$ lb/ft
- $N_2 = 11,323$ lb/ft
- $N_3 = 15,000$ lb/ft

The average compressive strength at the time of testing of all concrete blocks tested in the XL hollow-core retaining block test series was 5,350 psi. No further adjustments have been made to reflect the interface shear performance of concrete with a minimum 28-day compressive strength of 4,000 psi.

The inflection points have been compiled by Redi-Rock International, LLC as a recommendation of peak interface shear capacity. It is accurate to the best of our knowledge as of the date of its issue. However, this determination of suitability and appropriateness of any design information and the appropriateness of this data for a given design purpose is the sole responsibility of the user.
Geogrid Connection Design Parameters—Miragrid 5XT

Test Methods: ASTM D6638 & NCMA SRWU-1
Test Facility: Bathurst, Clarabut Geotechnical Testing, Inc.
Test Date: February 17, 2011
Block Type: Positive Connection (PC) Block

Design Information

CONNECTION DESIGN DATA

- **Peck Connection (average) = 4,663 lb/ft (68.1 kN/m)**

CONNECTION STRENGTH TEST DATA

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Normal Load (lb/ft)</th>
<th>Peak Connection (lb/ft)</th>
<th>Observed Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,236 (32.6)</td>
<td>5,040 (73.6)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>2</td>
<td>775 (11.3)</td>
<td>4,880 (70.9)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>3</td>
<td>7,165 (108.4)</td>
<td>4,444 (65.2)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>4</td>
<td>2,242 (32.7)</td>
<td>4,343 (63.4)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>5</td>
<td>1,649 (24.1)</td>
<td>4,658 (68.6)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>6</td>
<td>3,123 (45.6)</td>
<td>4,680 (68.3)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>7</td>
<td>2,236 (32.6)</td>
<td>4,838 (70.6)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>8</td>
<td>3,091 (48.2)</td>
<td>4,444 (64.9)</td>
<td>Grid Rupture</td>
</tr>
</tbody>
</table>

Peak Connection = 4,663 lb/ft (68.1 kN/m)

Geogrid Connection Design Parameters—Miragrid 8XT

Test Methods: ASTM D6638 & NCMA SRWU-1
Test Facility: Bathurst, Clarabut Geotechnical Testing, Inc.
Test Date: December 16, 2011
Block Type: Positive Connection (PC) Block

Design Information

CONNECTION DESIGN DATA

- **Peck Connection (average) = 8,098 lb/ft (118.2 kN/m)**

CONNECTION STRENGTH TEST DATA

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Normal Load (lb/ft)</th>
<th>Peak Connection (lb/ft)</th>
<th>Observed Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,960 (28.6)</td>
<td>7,995 (116.7)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>2</td>
<td>2,036 (29.7)</td>
<td>7,949 (116.0)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>3</td>
<td>5,165 (75.4)</td>
<td>4,444 (64.9)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>4</td>
<td>2,242 (32.7)</td>
<td>4,343 (63.4)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>5</td>
<td>2,914 (42.5)</td>
<td>8,269 (120.7)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>6</td>
<td>3,715 (54.2)</td>
<td>7,995 (116.7)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>7</td>
<td>1,900 (27.7)</td>
<td>8,452 (123.3)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>8</td>
<td>4,551 (66.4)</td>
<td>8,269 (120.7)</td>
<td>Grid Rupture</td>
</tr>
</tbody>
</table>

Peak Connection = 8,098 lb/ft (118.2 kN/m)
Geogrid Connection Design Parameters—Miragrid 10XT

Test Methods: ASTM D6638 & NCMA SRWU-1
Test Facility: Bathurst, Clarabut Geotechnical Testing, Inc.
Geogrid Type: Miragrid 10XT
Test Date: November 28, 2011
Block Type: Positive Connection (PC) Block

CONNECTION STRENGTH TEST DATA

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Normal Load (lb/ft)</th>
<th>Peak Connection (lb/ft)</th>
<th>Observed Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,200 (29.0)</td>
<td>9,046 (132.0)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>2</td>
<td>2,288 (53.3)</td>
<td>8,452 (132.3)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>3</td>
<td>1,147 (26.1)</td>
<td>8,589 (135.7)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>4</td>
<td>2,067 (48.2)</td>
<td>9,365 (136.7)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>5</td>
<td>2,918 (64.6)</td>
<td>8,863 (129.3)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>6</td>
<td>3,850 (85.9)</td>
<td>9,554 (140.2)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>7</td>
<td>2,067 (48.2)</td>
<td>9,000 (131.3)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>8</td>
<td>4,707 (108.7)</td>
<td>9,046 (132.0)</td>
<td>Grid Rupture</td>
</tr>
</tbody>
</table>

Peak Connection\(\text{average} = 8,994 \text{ lb/ft (131.3 kN/m)} \)

CONNECTION DESIGN DATA

Miragrid 10XT Ultimate Tensile Strength (MARV)\(T_{\text{ult}} = 9,500 \text{ lb/ft (138.6 kN/m)} \)

Ultimate Connection Strength\(T_{\text{Sample}} = 8,681 \text{ lb/ft (126.7 kN/m)} \)

Ultimate Tensile Strength of Geosynthetic Test Sample \(T = 10,035 \text{ lb/ft (155.2 kN/m)} \)

Connection Strength / Sample Strength \(T_{\text{Sample}} / T = 0.82 \)

Short-term Ultimate Connection Strength Reduction Factor \(CR_u = 0.82 \)

Creep Reduction Factor

75-Year Design RF\(CR_{75} = 1.56 \)

100-Year Design RF\(CR_{100} = 1.58 \)

Durability Reduction Factor \(RF_d = 1.15 \)

Nominal Long-term Geosynthetic Connection Strength

75-Year Design \(T_{\text{Sample}} = 4,342 \text{ lb/ft (63.4 kN/m)} \)

100-Year Design \(T_{\text{Sample}} = 4,287 \text{ lb/ft (62.6 kN/m)} \)
Geogrid Connection Design Parameters—Miragrid 24XT

Test Methods: ASTM D6638 & NCMA SRWU-1
Test Facility: Bathurst, Clarabut Geotechnical Testing, Inc.
Block Type: Positive Connection (PC) Block

Geogrid Connection Design Parameters—Miragrid 24XT

Peak Connection (average) = 21,288 lb/ft (310.7 kN/m)

Nominal Long-term Geosynthetic Connection Strength

- Durability Reduction Factor (d) RFD = 1.15
- Connection Strength / Sample Strength T
 - Short-term Ultimate Connection Strength Reduction Factor (c) CRu = 0.70
 - Creep Reduction Factor
 - 75-Year Design CR75 = 0.70
 - 100-Year Design CR 100 = 0.70
- Long-term Connection Strength Reduction Factor
 - 75-Year Design CR75 = 0.45
 - 100-Year Design CR 100 = 0.45

Normal Load Peak Connection Capacity, lb/ft (kN/m)

- 75-Year Design CRc(75) = 0.45
- 100-Year Design CRc(100) = 0.45

Geogrid Connection Test Data (a)

- Normal Load, lb/ft (kN/m)
- Peak Connection, lb/ft (kN/m)
- Observed Failure

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Normal Load lb/ft (kN/m)</th>
<th>Peak Connection lb/ft (kN/m)</th>
<th>Observed Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4,046 (59.0)</td>
<td>20,375 (297.4)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>2</td>
<td>4,362 (63.7)</td>
<td>22,020 (321.4)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>3</td>
<td>4,655 (67.3)</td>
<td>22,568 (329.4)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>4</td>
<td>2,538 (37.0)</td>
<td>20,852 (304.0)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>5</td>
<td>1,713 (25.0)</td>
<td>21,746 (317.4)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>6</td>
<td>5,248 (76.6)</td>
<td>21,837 (318.7)</td>
<td>Block & Grid</td>
</tr>
<tr>
<td>7</td>
<td>2,539 (37.1)</td>
<td>19,914 (290.6)</td>
<td>Grid Rupture</td>
</tr>
<tr>
<td>8</td>
<td>4,063 (59.3)</td>
<td>21,015 (306.7)</td>
<td>Block Rupture</td>
</tr>
</tbody>
</table>

Peak Connection 75-Year Design = 21,288 lb/ft (310.7 kN/m)
Peak Connection 100-Year Design = 20,535 lb/ft (299.7 kN/m)

Geogrid Packaging, Ordering, and Delivery

Geogrid for Redi-Rock Positive Connection (PC) System retaining walls is provided in 12 inch (305 millimeter) wide strips in 200 feet (61 meters) long rolls. Geogrids approved for use are Mirafi XT manufactured by TenCate Geosynthetics of Pendergrass, Georgia, USA. The geogrid strips are factory cut to width and are certified for width and strength by TenCate Mirafi. Other geogrid products or strips that are field cut to width from larger rolls are not allowed.

<table>
<thead>
<tr>
<th>Geogrid</th>
<th>Rolls Per Pallet</th>
<th>Pallet Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>5XT</td>
<td>60</td>
<td>743 lb (337 kg)</td>
</tr>
<tr>
<td>8XT</td>
<td>48</td>
<td>764 lb (346 kg)</td>
</tr>
<tr>
<td>10XT</td>
<td>48</td>
<td>958 lb (434 kg)</td>
</tr>
<tr>
<td>20 XT</td>
<td>27</td>
<td>503 lb (228 kg)</td>
</tr>
<tr>
<td>24XT</td>
<td>27</td>
<td>1,478 lb (670 kg)</td>
</tr>
</tbody>
</table>

The geogrid is packaged with 3 rolls on each cardboard tube. Total number of rolls that can be placed on a pallet varies with product type.

Geogrid strips are available exclusively through the Redi-Rock network of independently-owned and -operated, licensed manufacturers. Contact information for the Redi-Rock manufacturer in your area is available at redi-rock.com.

Typically, the geogrid strips are ordered by the pallet. If your project doesn’t require a full pallet of geogrid strips, smaller tube quantities may be available from your Redi-Rock manufacturer.

Additionally, custom roll lengths between 150 feet (45 meters) and 250 feet (76 meters) are available in quantities greater than 48 pallets of the same geogrid type. Plan ahead because a minimum 10 week lead time is required for custom lengths.

Geogrid Estimating

Geogrid estimating for a project is a simple process:

1. Determine the cut length of strips for your different wall sections.
2. Roll length / cut length = number of whole strips you can get from each roll of geogrid.
3. Total number of required strips / number of strips per roll = total number of rolls you need to order.

The preliminary charts list an approximate length of geogrid for estimating purposes. The example below is for a 21 foot (6.4 meter) tall wall section in 30° soil with no surcharge loads or slopes.

<table>
<thead>
<tr>
<th>Type</th>
<th>Rolls per linear foot</th>
<th>Rolls per linear meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>5XT</td>
<td>±0.26</td>
<td>±0.85</td>
</tr>
<tr>
<td>10XT</td>
<td>±0.30</td>
<td>±1.00</td>
</tr>
</tbody>
</table>

In this example, the geogrid required to build a 100 foot (30.5 meter) long section of wall (26 blocks long) is:

100 x 0.26 = 26 rolls of 5XT
100 x 0.30 = 30 rolls of 10XT

(Typical performance is expressed or implied by the preliminary reinforcement schedule in the MSE Wall section of the DRM.)

The information contained in this report has connection capacity. It is accurate to the best of Redi-Rock’s knowledge as of the date of its issue. However, final determination of the suitability of geogrid for a given design purpose is the sole responsibility of the user. No warranty of performance is expressed or implied by the Redi-Rock manufacturer.

Redi-Rock manufacturer in your area is available at redi-rock.com.

(c) 2020 Redi-Rock International, LLC
redi-rock.com

© 2020 Redi-Rock International, LLC
redi-rock.com
Minimum Turning Radius

Convex curves can easily be incorporated into a Redi-Rock wall. Redi-Rock blocks are tapered 7½° on each side. The smallest radius that can be made with Redi-Rock blocks (without cutting the blocks) occurs when the blocks are placed together with their sides touching. This minimum radius for full size blocks is 14 feet - 6 inches (4.42 m) from the face of the blocks.

Block to block setback will cause the radius for each succeeding row to be smaller than the row below. To ensure the minimum radius for the top row of blocks in a wall, start with the minimum radius and then add 2” (51 mm) per course for each standard setback block 18-inch high block, 10” (254 mm) per course for each 9” (230 mm) setback block, and 17” (432 mm) per course for each planter block in the wall below the top row of blocks. For 36-inch high XL blocks, add 4” (101.6 mm) per row.

MINIMUM RADIUS FOR BOTTOM ROW OF BLOCKS

<table>
<thead>
<tr>
<th>Height of Wall</th>
<th>18-INCH (457 mm) HIGH BLOCKS</th>
<th>36-INCH (914 mm) HIGH XL BLOCKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Radius From Face of Block</td>
<td>Radius From Face of Block</td>
</tr>
<tr>
<td>1’-6” (0.46 m)</td>
<td>14’-6” (4.42 m)</td>
<td>15’-0” (4.57 m)</td>
</tr>
<tr>
<td>3’-0” (0.91 m)</td>
<td>14’-8” (4.47 m)</td>
<td>15’-2” (4.62 m)</td>
</tr>
<tr>
<td>4’-6” (1.37 m)</td>
<td>14’-10” (4.52 m)</td>
<td>15’-4” (4.67 m)</td>
</tr>
<tr>
<td>6’-0” (1.83 m)</td>
<td>15’-0” (4.57 m)</td>
<td>15’-6” (4.72 m)</td>
</tr>
<tr>
<td>7’-6” (2.29 m)</td>
<td>15’-2” (4.62 m)</td>
<td>15’-8” (4.78 m)</td>
</tr>
<tr>
<td>9’-0” (2.74 m)</td>
<td>15’-4” (4.67 m)</td>
<td>15’-10” (4.83 m)</td>
</tr>
<tr>
<td>10’-6” (3.20 m)</td>
<td>15’-6” (4.72 m)</td>
<td>16’-0” (4.88 m)</td>
</tr>
<tr>
<td>12’-0” (3.66 m)</td>
<td>15’-8” (4.78 m)</td>
<td>16’-2” (4.98 m)</td>
</tr>
<tr>
<td>13’-6” (4.11 m)</td>
<td>15’-10” (4.83 m)</td>
<td>16’-4” (5.03 m)</td>
</tr>
<tr>
<td>15’-0” (4.57 m)</td>
<td>16’-0” (4.88 m)</td>
<td>16’-6” (5.08 m)</td>
</tr>
<tr>
<td>16’-6” (5.03 m)</td>
<td>16’-2” (4.98 m)</td>
<td></td>
</tr>
<tr>
<td>18’-0” (5.49 m)</td>
<td>16’-4” (4.98 m)</td>
<td></td>
</tr>
<tr>
<td>19’-6” (5.94 m)</td>
<td>16’-6” (5.03 m)</td>
<td></td>
</tr>
<tr>
<td>21’-0” (6.4 m)</td>
<td>16’-8” (5.08 m)</td>
<td></td>
</tr>
</tbody>
</table>

Concave curves may be installed at varying radii. The blocks should be placed tight together to make a smooth curve. Although there is no fixed minimum radius, smaller radii lengths of less than 14’6” (4.42 m) will result in exposing more of the untextured top face of the blocks in the underlying layer.

Project: Pigeon Forge Park
Customer: City of Pigeon Forge, Tennessee
Block Manufacturer: Blalock Ready Mix
Location: Pigeon Forge, Tennessee
Completed: 2013
Positive Connection (PC) Design Guide

Redi-Rock publishes a great resource created especially for engineers who are considering, designing, or reviewing a mechanically stabilized earth wall utilizing the Redi-Rock PC System. Inside the PC System Design Guide you will find an overview of the system, sample projects, components, MSEW inputs, and an example problem. This 30 page document is available for immediate download at redi-rock.com.

IN THE PC DESIGN GUIDE, YOU’LL FIND:
• System overview
• Case Studies
• Description of system components
• Recommended MSEW input parameters
• Recommended connection design parameters
• Example problem

Redi-Rock Wall Freeware & Professional

THE software tools to optimize your Redi-Rock designs

As a retaining wall engineer, you don’t want to be kept up at night wondering about a wall failure. The Redi-Rock system comes with two robust design software packages to provide the peace of mind you need. Developed by FINE Software, the geotechnical experts that developed the full suite of GEO5 programs, both versions of Redi-Rock Wall provide an amazing amount of control over every aspect of your design, allowing you to optimize your wall from top to bottom.

REDI-ROCK WALL FREWARE
• Design and analyze gravity walls
• Bearing capacity and slope stability modules
• ASD or LRFD calculation capacity
• 3D visualization

Thousands of engineers download the freeware every year. Get your copy today at redi-rock.com/freeware.

REDI-ROCK WALL PROFESSIONAL
• Design and analyze gravity walls and MSE walls using Positive Connection (PC) blocks
• Includes full GEO5 Settlement, Slope Stability, and Spread Footing modules
• ASD or LRFD calculation capacity
• 3D visualization

Upgrade to Redi-Rock Wall Professional to take your designs to new heights. Lease, buy, or demo the software at redi-rock.com/pro.